奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學習中也是需要的??吹搅艘坏烙幸馑嫉念},就不惜一切代價攻克它。為了學習,廢寢忘食一點也不是難事,只要你做到了有興趣。高三頻下面是小編為大家整理的2023年高三數學必修三知識點整理【完整版】,供大家參考。
【導語】奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學習中也是需要的。看到了一道有意思的題,就不惜一切代價攻克它。為了學習,廢寢忘食一點也不是難事,只要你做到了有興趣。高三頻道給大家整理了《高三數學必修三知識點整理》供大家參考,歡迎閱讀!
1賦值語句:在表述一個算法時,經常要引入變量,并賦給該變量一個值,用來表明賦給某一個變量的一個具體的確定值的語句叫做賦值語句。
賦值語句的一般格式:變量名表達式
①“=”的意義和作用:賦值語句中的“=”號,稱作賦值號。
②賦值語句的作用:先計算出賦值號右邊表達式的值,然后把該值賦給賦值號左邊的變量,使該變量的值等于表達式的值。
③關于賦值語句,需要注意幾點:
?、≠x值號左邊只能是變量名,而不是表達式。例如3.6=X,5=y;都是錯誤的.
ⅱ賦值號左右不能對換:賦值語句是將賦值號右邊的表達式賦值給賦值號左邊的變量,例如:Y=X,表示用X的值替代變量Y原先的取值,不能改寫成X=Y,因為后者表示用Y的值替代變量X的值。
?、2荒芾觅x值語句進行代數式或符號的演算:在賦值語句中的賦值符號右邊的表達式中的每一個變量都必須事先賦值給確定的值,不能用賦值語句進行如化簡、因式分解等演算,在一個賦值語句中只能給一個變量賦值,不能出現兩個或多個“=”。
?、べx值號和數學中的等號的意義不同:賦值號左邊的變量如果原來沒有值,則在執行賦值語句后,獲得一個值。例如X=5;Y=1等;如果原來已經有值,則執行該語句后,以賦值號右邊表達式的值代替該變量的原值,即將原值“沖掉”。例如:N=N+1在數學中是不成立的,但在賦值語句中,意思是將N的原值加1再賦給N,即N的值增加1。
計算機執行這種形式的條件語句時,也是首先對IF后的條件進行判斷,如果條件符合,就執行語句,如果條件不符合,則直接結束該條件語句,轉而執行其他語句。其對應的程序框圖為:如下圖
條件語句的作用:在程序執行過程中,根據判斷是否滿足約定的條件而決定是否需要轉換到何處去。需要計算機按條件進行分析、比較、判斷,并按判斷后的不同情況進行不同的處理。
3循環結構:
算法中的循環結構是由循環語句來實現的。對應于程序框圖中的兩種循環結構,一般程序設計語言中也有當型WHILE型和直到型for型兩種語句結構。即WHILE語句和UNTIL語句。
?、賅HILE語句的一般格式是:
其中循環體是由計算機反復執行的一組語句構成的。WHLIE后面的“條件”是用于控制計算機執行循環體或跳出循環體的。
當計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執行WHILE與END之間的循環體;然后再檢查上述條件,如果條件仍符合,再次執行循環體,這個過程反復進行,直到某一次條件不符合為止。這時,計算機將不執行循環體,直接跳到END語句后,接著執行END之后的語句。其對應的程序結構框圖為:如下圖
其對應的程序結構框圖為:如上圖
從for型循環結構分析,計算機執行該語句時,先把初始值賦給循環變量,記下終值和步長,并比較初值和中止,如果初值超過終值,就執行end以后的語句,否則執行for語句下面的語句,執行到end語句時,計算機讓循環變量增加一個步長值,然后用增值后的循環變量值與終值比較,如果超過終值,就執行for語句以后的語句.是先執行循環體后進行條件判斷的循環語句。
定義:
形如y=x^aa為常數的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。
定義域和值域:
當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域。
性質:
對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^p/q=q次根號x的p次方,如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞。當指數n是負整數時,設a=-k,則x=1/x^k,顯然x≠0,函數的定義域是-∞,0∪0,+∞.因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;
排除了為0這種可能,即對于x
排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。
推薦訪問:知識點 必修 整理 高三數學必修三知識點整理 高三數學必修三知識點整理 高中數學必修三知識點整理 高一數學必修三知識點梳理 高二數學必修三知識點梳理